Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sensors (Basel) ; 22(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1765830

ABSTRACT

Respiratory diseases are one of the most common causes of death in the world and this recent COVID-19 pandemic is a key example. Problems such as infections, in general, affect many people and depending on the form of transmission they can spread throughout the world and weaken thousands of people. Two examples are severe acute respiratory syndrome and the recent coronavirus disease. These diseases have mild and severe forms, in which patients gravely affected need ventilatory support. The equipment that serves as a basis for operation of the mechanical ventilator is the air-oxygen blender, responsible for carrying out the air-oxygen mixture in the proper proportions ensuring constant supply. New blender models are described in the literature together with applications of control techniques, such as Proportional, Integrative and Derivative (PID); Fuzzy; and Adaptive. The results obtained from the literature show a significant improvement in patient care when using automatic controls instead of manual adjustment, increasing the safety and accuracy of the treatment. This study presents a deep review of the state of the art in air-oxygen benders, identifies the most relevant characteristics, performs a comparison study considering the most relevant available solutions, and identifies open research directions in the topic.


Subject(s)
COVID-19 , Oxygen , COVID-19/therapy , Humans , Oxygen/therapeutic use , Pandemics , Ventilators, Mechanical
2.
J Med Internet Res ; 24(2): e28735, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1714883

ABSTRACT

BACKGROUND: Mental disorders are normally diagnosed exclusively on the basis of symptoms, which are identified from patients' interviews and self-reported experiences. To make mental health diagnoses and monitoring more objective, different solutions have been proposed such as digital phenotyping of mental health (DPMH), which can expand the ability to identify and monitor health conditions based on the interactions of people with digital technologies. OBJECTIVE: This article aims to identify and characterize the sensing applications and public data sets for DPMH from a technical perspective. METHODS: We performed a systematic review of scientific literature and data sets. We searched 8 digital libraries and 20 data set repositories to find results that met the selection criteria. We conducted a data extraction process from the selected articles and data sets. For this purpose, a form was designed to extract relevant information, thus enabling us to answer the research questions and identify open issues and research trends. RESULTS: A total of 31 sensing apps and 8 data sets were identified and reviewed. Sensing apps explore different context data sources (eg, positioning, inertial, ambient) to support DPMH studies. These apps are designed to analyze and process collected data to classify (n=11) and predict (n=6) mental states/disorders, and also to investigate existing correlations between context data and mental states/disorders (n=6). Moreover, general-purpose sensing apps are developed to focus only on contextual data collection (n=9). The reviewed data sets contain context data that model different aspects of human behavior, such as sociability, mood, physical activity, sleep, with some also being multimodal. CONCLUSIONS: This systematic review provides in-depth analysis regarding solutions for DPMH. Results show growth in proposals for DPMH sensing apps in recent years, as opposed to a scarcity of public data sets. The review shows that there are features that can be measured on smart devices that can act as proxies for mental status and well-being; however, it should be noted that the combined evidence for high-quality features for mental states remains limited. DPMH presents a great perspective for future research, mainly to reach the needed maturity for applications in clinical settings.


Subject(s)
Mental Disorders , Mobile Applications , Humans , Mental Disorders/diagnosis , Mental Health
3.
IEEE Internet Things J ; 8(23): 16863-16871, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1526324

ABSTRACT

Human emotions are strongly coupled with physical and mental health of any individual. While emotions exbibit complex physiological and biological phenomenon, yet studies reveal that physiological signals can be used as an indirect measure of emotions. In unprecedented circumstances alike the coronavirus (Covid-19) outbreak, a remote Internet of Things (IoT) enabled solution, coupled with AI can interpret and communicate emotions to serve substantially in healthcare and related fields. This work proposes an integrated IoT framework that enables wireless communication of physiological signals to data processing hub where long short-term memory (LSTM)-based emotion recognition is performed. The proposed framework offers real-time communication and recognition of emotions that enables health monitoring and distance learning support amidst pandemics. In this study, the achieved results are very promising. In the proposed IoT protocols (TS-MAC and R-MAC), ultralow latency of 1 ms is achieved. R-MAC also offers improved reliability in comparison to state of the art. In addition, the proposed deep learning scheme offers high performance ([Formula: see text]-score) of 95%. The achieved results in communications and AI match the interdependency requirements of deep learning and IoT frameworks, thus ensuring the suitability of proposed work in distance learning, student engagement, healthcare, emotion support, and general wellbeing.

4.
Expert Syst ; 39(3): e12823, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1476182

ABSTRACT

Currently, many deep learning models are being used to classify COVID-19 and normal cases from chest X-rays. However, the available data (X-rays) for COVID-19 is limited to train a robust deep-learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high-dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep-convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID-19). To validate whether the generated images are accurate, we used the k-mean clustering technique with three clusters (Normal, Pneumonia, and COVID-19). We only selected the X-ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X-rays, we used the Grad-CAM technique to visualize the underlying pattern, which leads the network to its final decision.

5.
Multimed Syst ; 28(4): 1251-1262, 2022.
Article in English | MEDLINE | ID: covidwho-1318761

ABSTRACT

Amidst the global pandemic and catastrophe created by 'COVID-19', every research institution and scientist are doing their best efforts to invent or find the vaccine or medicine for the disease. The objective of this research is to design and develop a deep learning-based multi-modal for the screening of COVID-19 using chest radiographs and genomic sequences. The modal is also effective in finding the degree of genomic similarity among the Severe Acute Respiratory Syndrome-Coronavirus 2 and other prevalent viruses such as Severe Acute Respiratory Syndrome-Coronavirus, Middle East Respiratory Syndrome-Coronavirus, Human Immunodeficiency Virus, and Human T-cell Leukaemia Virus. The experimental results on the datasets available at National Centre for Biotechnology Information, GitHub, and Kaggle repositories show that it is successful in detecting the genome of 'SARS-CoV-2' in the host genome with an accuracy of 99.27% and screening of chest radiographs into COVID-19, non-COVID pneumonia and healthy with a sensitivity of 95.47%. Thus, it may prove a useful tool for doctors to quickly classify the infected and non-infected genomes. It can also be useful in finding the most effective drug from the available drugs for the treatment of 'COVID-19'.

6.
Int J Mach Learn Cybern ; 12(11): 3235-3248, 2021.
Article in English | MEDLINE | ID: covidwho-1014248

ABSTRACT

At present times, the drastic advancements in the 5G cellular and internet of things (IoT) technologies find useful in different applications of the healthcare sector. At the same time, COVID-19 is commonly spread from animals to persons, but today it is transmitting among persons by adapting the structure. It is a severe virus and inappropriately resulted in a global pandemic. Radiologists utilize X-ray or computed tomography (CT) images to diagnose COVID-19 disease. It is essential to identify and classify the disease through the use of image processing techniques. So, a new intelligent disease diagnosis model is in need to identify the COVID-19. In this view, this paper presents a novel IoT enabled Depthwise separable convolution neural network (DWS-CNN) with Deep support vector machine (DSVM) for COVID-19 diagnosis and classification. The proposed DWS-CNN model aims to detect both binary and multiple classes of COVID-19 by incorporating a set of processes namely data acquisition, Gaussian filtering (GF) based preprocessing, feature extraction, and classification. Initially, patient data will be collected in the data acquisition stage using IoT devices and sent to the cloud server. Besides, the GF technique is applied to remove the existence of noise that exists in the image. Then, the DWS-CNN model is employed for replacing default convolution for automatic feature extraction. Finally, the DSVM model is applied to determine the binary and multiple class labels of COVID-19. The diagnostic outcome of the DWS-CNN model is tested against Chest X-ray (CXR) image dataset and the results are investigated interms of distinct performance measures. The experimental results ensured the superior results of the DWS-CNN model by attaining maximum classification performance with the accuracy of 98.54% and 99.06% on binary and multiclass respectively.

7.
Sustain Cities Soc ; 65: 102571, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-894213

ABSTRACT

The ongoing COVID-19 corona virus outbreak has caused a global disaster with its deadly spreading. Due to the absence of effective remedial agents and the shortage of immunizations against the virus, population vulnerability increases. In the current situation, as there are no vaccines available; therefore, social distancing is thought to be an adequate precaution (norm) against the spread of the pandemic virus. The risks of virus spread can be minimized by avoiding physical contact among people. The purpose of this work is, therefore, to provide a deep learning platform for social distance tracking using an overhead perspective. The framework uses the YOLOv3 object recognition paradigm to identify humans in video sequences. The transfer learning methodology is also implemented to increase the accuracy of the model. In this way, the detection algorithm uses a pre-trained algorithm that is connected to an extra trained layer using an overhead human data set. The detection model identifies peoples using detected bounding box information. Using the Euclidean distance, the detected bounding box centroid's pairwise distances of people are determined. To estimate social distance violations between people, we used an approximation of physical distance to pixel and set a threshold. A violation threshold is established to evaluate whether or not the distance value breaches the minimum social distance threshold. In addition, a tracking algorithm is used to detect individuals in video sequences such that the person who violates/crosses the social distance threshold is also being tracked. Experiments are carried out on different video sequences to test the efficiency of the model. Findings indicate that the developed framework successfully distinguishes individuals who walk too near and breaches/violates social distances; also, the transfer learning approach boosts the overall efficiency of the model. The accuracy of 92% and 98% achieved by the detection model without and with transfer learning, respectively. The tracking accuracy of the model is 95%.

SELECTION OF CITATIONS
SEARCH DETAIL